Handout for the use of Matlab & Netlab to handle neural networks

1) Getting started with Matlab
2) Getting started with Netlab
3) The basic structure of the neural network code

1. MATLAB
Starting Matlab

Matlab is a computer language that has several advantages like handling matrix operations very easily.
Matlab is available on every computer in the JMU libraries. You just have to look under....

Start > JMU Applications > Subject Software > Natural Sciences and Maths — Matlab (Version 5 or 6)

Starting a program

To start your own program, you have to type in its name (e.g. ‘neural_model_01)!

<k MATLAB

1 “\metiabR12iwork

217 Undefined function or variakle ‘neaval_wnodel OL°,

>>

Undefined function?? Before everything else, you have to tell Matlab in which folder it should search for
your program!

There are many ways to do so:
a) You could either select the folder in which your program is stored by clicking the button below...

(Matlab 6)

7

M‘M

(Matlab 5)

N: >N @ binpatch.m
N:\HATLABNT ops:
N:\MATLABNT\toolbox\matlab\lar
N:\HATLABNT\toolbox\mnatlab\elx: @ computer.m
N:\HATLABNT\toolbox\natlabielf
N:\HMATLABNT\toolbox\matlab\spe ~[E) Contents.n
N:\HATLABNT\toolbox\matlab\mat [A) copytile.n
N:\HATLABNT\toolbox\mablab\datf @ dheclear.m
N:\MATLABNT\toolbox\matlab\pol dbecont . m
N:\MATLABNT\toolbox\matlab\ fux

b) ... or you are using the following command code:

path(path,'M:\your_folderlyour_program’)

[I found out that method (a) is somehow not working on every computer. In case you are in front of one
of them, use method (b). It should work all the time!].

NETLAB

Netlab is a free available software from the Aston University/Birmingham. It contains a lot of useful
programs, which we could use to build our own neural network. All those functions are written in Matlab
code which is the reason we first have to start Matlab until we can use Netlab.

You could download Netlab from the Internet from the following address:

http://www.ncrg.aston.ac.uk/netlab/

Please create a new folder in your M-drive and save the Netlab file there.

Next, double-click it. Since it is in WinZip-format, you should see the following window next. Please click
‘ aggree’.

2/ W@“/’ |

THE ARCHIVE UTILITY FOR WINDOWS

On the next window, you should click ‘extract’.

31100112,

31100112, 1.349 47% 715
31100112 4775 60% 1.890

311001 12.. 2607 65% 913
31100112 11012 78% 2656
311001 12. 2611 64% 948
31100t 12.. 1141 50% 567
311001 12.. 1362 54% 620 .

3iiget 2. 6176 84% 2282
31100112 5511 6i% 2163
3emaz.

Doing so, you get the chance to specify the folder. Please select the one you have created in your M-
drive.

Arbeitsplatz
0z 35Diskette (A1)
#gz) Compaq(C:}
& D)

L+3 gg Netzwerkumgebung

Now you are able to create your own neural network. You have all the tools!

31

The basic structure of the neural network code
Basics

A Matlab-file that should contain the program code could be created by clicking in the Matlab window:
FILE>NEW>M-FILE. Some older versions don't have this editor. In this case, you could use the
Microsoft program ‘Wordpad' (or any other word processing program like ‘Word’). When you save a file
which is intended to be a Matlab file, you have to save it with the extension ‘.m’ (e.g. file_name.m’).
Otherwise Matlab won't be able to identify your program as a file that contains Matlab code.

Get data

First, we will start with the problem how to get the time series / the data into Matlab. If you have the
input time series (1.1, 2.2, 3.3) you have to write:

Time_series_name =[1.1; 2.2; 3.3]
or

Time_series_name = |
1.1

2.2

3.3]

That creates a column vector with the name ‘Time_series_name’ that includes your values.

After saving your program and starting it by typing in its name in the Matlab command window and
pressing the enter button, Matlab shows the vector.

Tip: If you would like to define a vector but you don't want Matlab to show it all the time, you could
type a ;' after each command line.

A way to handle large time series much easier is to create a separate file (with the name
‘Time_series_name.m’) which includes the vector.

function [vector] = Time_series_name;

vector= |
1.1
2.2
3.3

];

Tip: You have a neural network with 2 input nodes (that is you have 2 time series as input for your
neural network). Unfortunately, your data are all in Excel. If your time series are in columns
(if not, transpose them in Excel by copying them and using EDIT>PASTE SPECIAL
>TRANSPOSE) you could simply copy [mark the data and press ‘Ctrl+c’ in Excel]/paste
[press ‘Ctri+v' in Matlab] them into your Matlab file. Make sure, you paste them at the right

4/" & M

function [vector] = Time_series_name;

vector= [
...herelll
eg.

1 2
11 22
1M1 222
I;

For your neural network, you have to create two files. One with the name ‘input_TRAINING' which
includes the training data and another ‘output_TRAINING’ which includes the corresponding target
values.

Starting our neural network program, we define a variable x, which includes the input training data and a
variable t, which represents the target values. The Matlab code looks like this:

X = [input_TRAINING];
t = [output_TRAINING];

Set up network parameters.
Now we can define the parameter of the network:

(Please note, that you could add comments in your Matlab code by marking their beginning with a ‘%’
Everything that follows a ‘%" will be ignored by Matlab)

nin =10; % Number of inputs.
nhidden = 5; % Number of hidden units.
nout =1; % Number of outputs.

Create a 2-layer feed-forward network.
net = mlp (nin, nhidden, nout, 'linear');

This command takes the number of inputs, hidden units and output units for a 2-layer feed-forward
network (the definition varies sometimes; here a 2-layer feed forward network consists of one hidden
layer), together with string ‘linear’ which specifies the output unit activation function (beside ‘linear’, its
values could also be ‘logistic’ or ‘softmax’), and returns a data structure net.

The weights are drawn from a zero mean, unit variance Gaussian distribution (=normal distribution). The
hidden units use the tanh activation function (hyperbolic tangent).

If you save your program now and execute it in Matlab, you get the following reply by typing in ‘net
(which is the result of the above used function ‘mip’).

type = 'mip'
nin = number of inputs

nhidden = number of hidden units yN\/ |
51 w /

nout = number of outputs

nwts = total number of weights and biases

actfn = string describing the output unit activation function
w1 = first-layer weight matrix

b1 = first-layer bias vector

w2 = second-layer weight matrix

b2 = second-layer bias vector

Since the weights are stored as vectors, you have to type ‘net.w1’ to see the values of the weights ‘w1

Here:
w1 has dimensions nin times nhidden,
b1 has dimensions 1 times nhidden,
w2 has dimensions nhidden times nout, and
b2 has dimensions 1 times nout.

Explanation: a bias weight (here: b1 and b2) has the same function as the intercept b in the
equation y = m*x +b.

% Set up vector of options for the optimiser.

options = zeros(1,18); % sets each of the 18 options to zero
options(1) =1; % This provides display of error values.
options(14) =10; % Number of training cycles.
options(17) =0.001; % momentum

options(18) =0.0005; % lIrate

By defining values for each of the 18 options, you get the chance to influence the number of training
iterations, the ‘speed’ of the learning process, and many more.
Train

Having now created a neural network structure, having initialised our weights with random numbers and
having specified the training parameters, we now simply have to train our network.

This is done via the command ‘netopt’:

net = netopt(net, options, x, t, 'graddesc’);

where the function ‘netopt' needs as input the network structure 'net’, the values of the parameters
stored in ‘options’, the training input data set 'x', the corresponding training data targets ‘' and a
specification of the training algorithm (here: gradient descend).

As a result of the function ‘netopt’ you get the updated network structure (in fact, only the weights should

have changed!).

Application to out-of-sample data

Since we now have the trained neural network, we want to apply it to unseen data. This could be done
with the function ‘mipfwd’. This function takes the input data and calculates the network output based on
the actual (now trained) network weights.

y = mipfwd(net, input_1TEST);

The function needs as an input the network (‘net) and the out of sample data (which here have the
name ‘input_1test).

The result of your calculation is the vector y. This vector contains the output values corresponding to
each line of your input vector.

If you want to use a neural network to forecast stock prices (e.g. percentage changes), the vector y will
contain them. To calculate the profit you would have made by applying the network to the out of sample
time period, you have to compare the forecast values with the actual values.

I the actual values are represented by the vector ‘output_1Test’, you just have to look at the sign of
your forecast. Say if the actual value would have been an upmove of +3.4% and your forecast would
have been +2.5%, you would have gained the actual value of +3.4% (not the forecast +2.5%). To
calculate your actual profit, you have to take the actual values and compare their sign (+ or -) with your
forecast. The function SIGN(...) returns a vector where the input values are transformed in a way that a
positive value is represented by a +1, a negative values by a -1 and a 0 by a 0. If you transform your
forecast in that way and multiply it with the actual value, you get the actual gains.

y = sign(y) .* (output_1TEST);

Note: If you want to multiply two vectors element by element (and not in the way a vector
multiplication would take place) you have to write *.* instead of *'Il!

The vector y contains now the achieved gain corresponding to each input data line. To sum the
elements up, use the command SUM(...).

total_gain = sum(y)

Summary

To create a neural network, you have to follow the following steps:
Create data vectors (Training data [input and target] and out of sample data [input]).
Create network structure (using the command MLP()).

1

2.

3. Train network with the training data (using the command NETOPT()).

4 Calculate the forecast corresponding to the out of sample input data (using MPLFWD()).

"

A test program

% Generate artificial data
%

ndata = 150; % Number of data points.

noise = 0.2; % Standard deviation of noise distribution.

Input_Test = [0:1/(ndata - 1):1]; % create vector with increasing equally spaced 'ndata’
numbers between 0 and 1 [0;.....;1]

Output_Test = sin(2*pi*x) + noise*randn(ndata, 1); % create 'ndata’ numbers forming a sinus

curve with noise

% Set up parameters
%

nin =1; % Number of inputs.
nhidden =5, % Number of hidden units.
nout =1, % Number of outputs.

% Set up vector of options for the optimiser.
%

options = zeros(1,18);

options(1) =1, % This provides display of error values.
options(14) =500; % Number of training cycles.
options(17) ~ =0.001; % momentum

options(18) = 0.005; % Irate

% Create and initialise network
%

net = mip(nin, nhidden, nout, 'linear');

% Get results before training
%

results_before = mipfwd(net, input_Test); % network output before training
(based on the random weights)

%Train the net
%

[net, options] = netopt(net, options, input_Test, output_Test, 'graddesc’);

%Get results after training
%

results_after = mipfwd(net, input_Test); % network output after the training through

forward calculation ;\[‘/
, ﬂ“\’
81 %%b\

% Plot results
%

clf; % clear current figure

hold on; % necessary to allow to plot many lines in the same figure
plot(output_Test); % plot output_Test in blue (standard)
plot(results_before,'r-'); % plot results before training in red

plot(results_after,'g-); % plot results after training in green

hold off;

% END

As a result, you get the following graph with ‘blue’ being the target values, ‘red’ being the best guess of
the untrained network and ‘green’ being the results of the trained network.

A real data application

The program below has in principle the main structure as the example described above. However it has
two important differences.

First, you are able to save or load network parameters. This is done by setting the variable:
‘saving_flag'. If you choose 1, the network data are going to be saved while you could load an already
saved network by setting the variable to 2. Leaving it set to 0 will create a new network but will not save
it. The file name consists of two parts: a number and a name (e.g. 3data_stock). The number has to be
defined in the variable ‘net_number' while the name is defined through the variable ‘name_files'.

N

yf

The other difference compared to the example previously described is the fact, that this model requires
6 time series to be defined by you. Two series (an input and an output series) each for the training data
set, the test data set and the validation data set. The program will take the training data set to train the
network weights in a way that you get the best results based on the test data set. Those weights are
going to be fixed and will be applied in the next step to the out of sample data (validation data set). As
you may have noticed there is the variable ‘training_blocks’. In the previous example you have defined
the training iterations once. Here, the number training iterations are repeated as often as defined by the
variable training_block. The network is therefore trained as often as (training_blocks) x
(training_iterations). The reason for doing this is to define the point in time, when the network (being
trained on the training data set) has reached its optimal result on the test data set. Therefore after each
training_block on the training data set, the corresponding result (with the same actual weights) is
calculated on the test data set. In the end, the program chooses automatically those weights that leads
to the best results measured on the test data set. This procedure should help to avoid overfitting, that is
the network should learn only the relevant structure and ignore the noise in the signal.

For your own application, you have therefore to define:

the data (the training, test and validation data sets)

the network structure

the training procedure (number of training_iterations and training_blocks) and/or
the option to save the new network or to load a previous one.

% DEMO PRG_01
%
%
%

cle; % clear screen
disp('Press any key to start."); % display text
pause; % wait until a key is pressed

%
% Generate artificial data

input_Training_data = input_4Test;
output_Training_data = output_4Test;

input_Test_data =input_TEST;
output_Test_data = output_TEST,;

input_Validation_data = input_Validation;
output_Validation_data = output_Validation;

%
% Set up network parameters

nin =10; % Number of inputs
nhidden =b; % Number of hidden units
nout =1; % Number of outputs

4
10/13 M
Ay

% Set up vector of options for the optimiser

options = zeros(1,18);

options(1) =1, % This provides display of error values
options(14) =5; % Number of training cycles
options(17) =0.001; % momentum

options(18) =0.003; % Irate

training_blocks = 20;

% Set up parameter for data saving

saving_flag =2, % 1= save net data; 2= load net data; 0= none of it
name_files = 'file_name_here";
net_number =1,

o/
/0

% Create and initialize network or load saved one

outputfile = [int2str(net_number), name_files J;

if saving_flag==2; eval(['load ',outputfile]); end; % load net_data in case options are set to do so!

if saving_flag~=2; net = mlp(nin, nhidden, nout, 'linear');end; % create new net_data in case
options are set to do so!

%

% Train network

sum_Training
sum_Test
net_max
gain_max
loop_max

clf;

| gy gy oy
e s o

x

0

—

N

(=)

~

o

for loop_01 = 1: training_blocks;

%Train network

if saving_flag ~= 2;

[net, options] = netopt(net, options, input_Training_data, output_Training_data, ‘graddesc’);
end;

results_training = mipfwd(net, input_Training_data);

results_test = mipfwd(net, input_Test_data);

gain_training = sum(sign(results_training).*(output_Training_data));

gain_test = sum(sign(results_test).*(output_Test_data));

sum_Training = [sum_Training; gain_{raining];

sum_Test = [sum_Test; gain_test];

if gain_test > gain_max; '
gain_max =gain_test
loop_max =loop_01; ’ N

1113 W&}J

net_max = net;
end;

end;

%
% save net_data if options are set to do so!

if saving_flag == 1; eval(['save ',outputfile,' net_max']);end;

%

subplot(2,1,1);

hold on;

plot(sum_Training,'r-);
plot(sum_Test,'g-);

plot([loop_max loop_max], [0 gain_max]);
hold off;

title(red: Training data green: Test data’);
xlabel('# training blocks");
ylabel('gain’);

%

subplot(2,1,2);

net = net_max;

results_validation = mipfwd(net, input_Validation_data);

gain_validation = sum(sign(results_validation).*(output_Validation_data));

plot(cumsum ({sign(results_validation).*(output_Validation_data))));
title('validation set');

xlabel(gain_validation);

ylabel('cumulative gain);

% END

12113

The red line shows that the potential gain on the training data set increases as the training process goes
on. The green line shows the potential gain on the test data set when the same weights are applied to
the test data rather than to the training data.

The blue line indicates that the potential gain on the test data peaks after the 4. training block. The
corresponding weights are used to be applied to the out-of-sample data set (=validation data set).

red; mir;ing:data: graen: Test data

8 o
 #uainingblocks

The realised gain with the above mentioned weight set is in this example about 15% on the validation
set.

13/13

